Ортогональный базис

Ортогональный базис — система попарно ортогональных элементов e1,e2,...,en,... гильбертова пространства X такая, что любой элемент x\in X однозначно представим в виде сходящегося по норме ряда

x=\sum_{n=1}^\infty a_ne_n

называемым рядом Фурье элемента x по системе {en}. Обычно базис {en} выбирается так, что | en | = 1, и тогда он называется ортонормированным базисом. В этом случае числа an, называются коэффициентами Фурье элемента x по ортонормированному базису {en}, имеют вид

a_n=\langle x,e_n\rangle.

Необходимым и достаточным условием того, чтобы ортонормпрованная система {en} была базисом, является равенство Парсеваля

x=\sum_{n=1}^\infty \langle x,e_n\rangle e_n

для любого x\in X. Гильбертово пространство, имеющее ортонормированный базис, является сепарабельным, и обратно, во всяком сепарабельном гильбертовом пространстве существует ортонормированный базис.

Если задана произвольная система чисел {an} такая, что \sum a_n^2<\infty, то в случае гильбертова пространства с ортонормированным базисом {en} ряд \sum_{n=1}^\infty a_ne_n - сходится по норме к некоторому элементу x\in X. Этим устанавливается изоморфизм любого сепарабельного гильбертова пространства пространству l2 (теорема Рисса — Фишера).

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home