Обыкновенное дифференциальное уравнение

Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения вида F(t,x,x',x'',...,x(n)) = 0, где x = x(t) — неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от переменной времени t, штрих означает дифференцирование по t. Число n называется порядком дифференциального уравнения.

Основные задачи и результаты теории дифференциальных уравнений: существование и единственность решения различных задач для ОДУ, методы решения простейших ОДУ, качественное исследование решений ОДУ без нахождения их явного вида.

Одно из простейших применений дифференциальных уравнений — решение нетривиальной задачи нахождения траектории тела по известным проекциям ускорения. Например, в соответствии со вторым законом Ньютона, ускорение тела пропорционально сумме действующих сил; соответствующее дифференциальное уравнение имеет вид:

m \ddot{x}= F(x,t).

Зная действующие силы (правая часть), можно решить это уравнение и найти траекторию движения точки.

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home