Аксиоматика Гильберта

Аксиоматика Гильберта — система аксиом Евклидовой геометрии. Разработана Гильбертом как более полная, нежели система аксиом Евклида.

Попытки улучшение Евклидовой аксиоматики предпринимались до Гильберта Пашем, Шуром, Пеано, Веронезе, однако подход Гильберта при всей его консервативности в выборе понятий оказался более успешным.

Содержание

Неопределяемые понятия

Неопределяемыми в этой системе аксиом понятиями являются: точка, прямая линия, плоскость. Есть также 3 элементарных бинарных отношения:

  • Лежать между, применимо к точкам;
  • Содержать, применимо к точкам и прямым, точкам и плоскостям или прямым и плоскостям;
  • Конгруэнтность (геометрическое равенство), применимо, например, к отрезкам, углам или треугольникам, и обозначается инфиксным символом ≅.

Все точки, прямые и плоскости предполагаются различными, если не оговорено особое.

Аксиомы

Система из 20 аксиом поделена на 5 групп:

  • аксиомы принадлежности:
    • планиметрические:
      1. Каковы бы ни были две точки A и B, существует прямая a, которой принадлежат эти точки.
      2. Каковы бы ни были две точки A и B, существует не более одной прямой, которой принадлежат эти точки.
      3. Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.
    • стереометрические:
      1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.
      2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.
      3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.
      4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обоим этим плоскостям.
      5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.
  • аксиомы порядка:
    • линейные:
      1. Если точка B прямой а лежит между точками А и С той же прямой, то А, В и С — различные точки указанной прямой, причем В лежит также и между С и А.
      2. Каковы бы ни были две различные точки А и С, на определяемой ими прямой существует по крайней мере она точка В такая, что С лежит между А и В.
      3. Среди любых трёх точек, лежащих на одной прямой существует не более одной точки, лежащей между двумя другими.
    • Аксиома Паша
  • аксиомы конгруэнтности:
    • конгруэнтность отрезков:
      1. Если А и В — две точки на прямой а, А’ — точка на той же прямой или на другой прямой а’, то по данную от точки А’ сторону прямой а’ найдется, и притом только одна, точка В’ такая, что отрезок А’B’ конгруэнтен отрезку АВ. Каждый отрезок АВ конгруэнтен отрезку ВА.1
      2. Если отрезки А’B’ и А"B" конгруэнтны одному и тому же отрезку АВ, то они конгруэнтны и между собой.
      3. Пусть АВ и ВС — два отрезка прямой а, не имеющие общих внутренних точек, А’B’ и B’C’ — два отрезка той же прямой, или другой прямой а’, также не имеющие общих внутренних точек. Тогда если отрезок АВ конгруэнтен отрезку А’B’, а отрезок ВС конгруэнтен отрезку B’C’, то отрезок АС конгруэнтен отрезку А’C’.
    • конгруэнтность углов:
      1. Если даны угол ∠ABC и луч B’C', тогда существует ровно два луча, B’D и B’E такие, что ∠DB’C' ≅ ∠ABC и ∠EB’C' ≅ ∠ABC.
    • Следствие. Каждый угол конгруэнтен сам себе.
      1. Треугольники ΔABC ≅ ΔA’B’C', если AB ≅ A’B', AC ≅ A’C', и ∠BAC ≅ ∠B’A’C'.
  • аксиомы непрерывности
      1. Аксиома Архимеда. Если даны отрезок CD и луч AB, то существует число n и n точек A1,…,An на AB таких, что: AjAj+1 ≅ CD, 1≤j<n, и B лежит между A1 and An.
      2. «Полнота линии». Добавление хотя бы одной дополнительной точки в прямую линию вызовет противоречие с одной из аксиом принадлежности, порядка, первыми двумя аксиомами конгруэнтности или аксиомой Архимеда.
  • аксиома параллельности

21-я аксиома

Гильберт изначально (1899) включил 21-ую аксиому:

«Любым четырём точкам на прямой можно присвоить имена A, B, C, и D так, чтобы точка B лежала между точками A и C, а также между A и D; точка C — между A и D, а также между B и D.»

Мур, Элиаким Хастингс (E. H. Moore(англ.)) доказал в 1902 году, что эта аксиома избыточна.

Ссылки

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home